The p-adic zeta function and a p-adic Euler constant

Heiko Knospe

TH Köln, University of Applied Sciences
heiko.knospe@th-koeln.de

25 September 2019

Topics of this Presentation

■ Introduction to zeta functions and p-adic numbers

■ Definitions of the p-adic zeta function ζ_{p}

- The Euler-Mascheroni constant γ_{p}

■ Computations of γ_{p}

The p-adic numbers

Let $\mathbb{Z}_{p}=\lim \left(\mathbb{Z} / p^{n}\right)$ and $\mathbb{Q}_{p}=\operatorname{Quot}\left(\mathbb{Z}_{p}\right)$ the quotient field. \mathbb{Q}_{p} is a complete non-Archimedean valued field with absolute value $\left|\left.\right|_{p}\right.$ such that $|p|=\frac{1}{p}$. The corresponding topology on \mathbb{Q}_{p} is zero-dimensional (basis of clopen sets); the balls $x+p^{n} \mathbb{Z}_{p}$, where $x \in \mathbb{Q}_{p}$ and $n \in \mathbb{Z}$, are open and compact.

Topology of \mathbb{Z}_{3}

Zeta and L-functions

Define a p-adic analogue ζ_{p} of the complex Riemann zeta function $\zeta(s)$ and Dirichlet L-functions $L(s, \chi)$, where χ is a Dirichlet character:

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}, \quad L(s, \chi)=\sum_{n \geq 1} \frac{\chi(s)}{n^{s}}, \quad s>1
$$

Consider the Dirichlet characters $\chi=\omega^{i}:(\mathbb{Z} / p \mathbb{Z})^{*} \rightarrow \mu_{p-1}$ for $i=0, \ldots, p-2$, where ω is the Teichmüller character.
We get $p-1$ twisted zeta functions:

$$
\zeta\left(s, \omega^{i}\right)=L\left(s, \omega^{i}\right)
$$

Zeta function at negative integers

The primary way of defining a p-adic L-functions is via p-adic interpolation of special values of classical L-functions. It is well known that

$$
\zeta(1-k)=-\frac{B_{k}}{k} \in \mathbb{Q}
$$

for integers $k \geq 1$, where B_{k} are the Bernoulli numbers.

p-adic Interpolation

Can we find a continuous function $\zeta_{p}: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$ which interpolates $\zeta(s)$ at $s=-1,-2,-3, \ldots$? Not quite, we have to:

- remove the Euler factor $\left(1-p^{-s}\right)^{-1}$, and
- define $p-1$ branches $\zeta_{p, i}$.

The branches $\zeta_{p, i}(s)=L_{p}\left(s, \omega^{1-i}\right)$ are continuous (Kummer congruences) and interpolate ($\left.1-p^{-s}\right) \zeta\left(s, \omega^{1-i-k}\right)$ for $s=1-k$ and $k \geq 2$. For $k \equiv 1-i \bmod p-1$, we have

$$
\zeta_{p, i}(1-k)=\left(1-p^{k-1}\right) \zeta(1-k)=-\left(1-p^{k-1}\right) \frac{B_{k}}{k} .
$$

For each residue class $i \in \mathbb{Z} /(p-1) \mathbb{Z}$, the negative integers $1-k=-1,-2,-3, \ldots$ with $k \equiv 1-i \bmod p-1$ are dense in \mathbb{Z}_{p}.

L p-adic zeta function

- Interpolation

Example

Let $p=3$. The sets of negative integers $1-k=-1,-2,-3, \ldots$ with $1-k \equiv 0 \bmod 2(\mathrm{red})$ and $1-k \equiv 1 \bmod 2($ green $)$ are dense in \mathbb{Z}_{3}.

p-adic Integration and Bernoulli numbers

Now show that $\zeta_{p, i}$ is analytic. It follows from elementary formulas on sums of powers that

$$
\int_{\mathbb{Z}_{p}} x^{k} d x=B_{k}
$$

Here we use the Volkenborn integral, which is based on the Haar distribution on \mathbb{Z}_{p}. Furthermore, we have

$$
\int_{\mathbb{Z}_{p}^{*}} x^{k} d x=\left(1-p^{k-1}\right) B_{k}=-k \zeta_{p, i}(1-k)
$$

for integers $k \geq 2$ and $k \equiv 1-i \bmod p-1$.

Kubota-Leopoldt L-function

The domain of ζ_{p} can be extended to a subset of $\mathbb{C}_{p}=\widehat{\mathbb{Q}_{p}}$, the completion of the algebraic closure of \mathbb{Q}_{p}. The Tate field \mathbb{C}_{p} is the p-adic analogue of the complex numbers \mathbb{C}.

Basically, we use the above formula

$$
\int_{\mathbb{Z}_{p}^{*}} x^{k} d x=\left(1-p^{k-1}\right) B_{k}=-k \zeta_{p, i}(1-k)
$$

and replace $k \in \mathbb{Z}$ by $1-s \in \mathbb{C}_{p}$. However, the function x^{1-s} is not continuous in s unless $x \equiv 1 \bmod p$. So we set $\langle x\rangle=\frac{x}{\omega(x)}$ and define

$$
\zeta_{p, i}(s)=\zeta_{p}\left(s, \omega^{1-i}\right)=\frac{1}{s-1} \int_{\mathbb{Z}_{p}^{*}} \omega(x)^{1-i}\langle x\rangle^{1-s} d x
$$

for $s \in \mathbb{C}_{p}$ such that $|s|<p^{\frac{p-2}{p-1}}$.

p-adic Measures

The Kubuta-Leopoldt L-function uses the Haar distribution. Now define p-adic zeta functions using a measure on \mathbb{Z}_{p}. Firstly, one considers Bernoulli distributions. Secondly, the Bernoulli distributions are regularized and turned into measures.

Theorem

Let $p \neq 2$ be a prime, $n \in \mathbb{N}$ and $a \in\left\{0,1, \ldots, p^{n}-1\right\}$. Then

$$
\mu\left(a+p^{n} \mathbb{Z}_{p}\right)= \begin{cases}\frac{1}{2} & \text { if } a \text { is even } \\ -\frac{1}{2} & \text { if } a \text { is odd }\end{cases}
$$

defines a measure μ on \mathbb{Z}_{p}. This measure is the regularization of the first Bernoulli distribution for $c=2$.

p-adic measures and Bernoulli numbers

Theorem

Let $k \in \mathbb{N}$ and μ the above measure on \mathbb{Z}_{p}. Then

$$
\int_{\mathbb{Z}_{p}} x^{k-1} d \mu=\frac{B_{k}}{k}\left(1-2^{k}\right)
$$

Restricting the integration to \mathbb{Z}_{p}^{*} yields

$$
\int_{\mathbb{Z}_{p}^{*}} x^{k-1} d \mu=\frac{B_{k}}{k}\left(1-2^{k}\right)\left(1-p^{k-1}\right)
$$

$\zeta_{p, i}$ can be constructed using μ :

$$
\zeta_{p, i}(s)=\zeta_{p}\left(s, \omega^{1-i}\right)=-\frac{1}{1-\omega(2)^{1-i}\langle 2\rangle^{1-s}} \int_{\mathbb{Z}_{p}^{*}} \omega(x)^{-i}\langle x\rangle^{-s} d \mu
$$

Iwasawa functions

$\zeta_{p, i}(s)$ is a Mellin transform of μ and analytic for $s \neq 1$. Furthermore, the integral representation shows that $\zeta_{p, i}(s)$ is a power series in $(1+p)^{s}$ with coefficients in \mathbb{Z}_{p} if $i \neq 1$. For $i=1$, i.e., if ω^{1-i} is the trivial character, $(s-1) \zeta_{p, 1}(s)$ is a power series. Such functions are called Iwasawa functions:

$$
f\left((1+p)^{s}-1\right) \text { where } f \in \mathbb{Z}_{p}\left[\left[1+p \mathbb{Z}_{p}\right]\right] \cong \mathbb{Z}_{p}[[T]]
$$

There is an algebraic construction of f using ideal class groups elements of the cyclotomic fields $\mathbb{Q}\left(\zeta_{p^{n}}\right)$ and the Main Conjecture (a theorem in this case) relates the two types of zeta functions.

Classical Euler constant

The Euler constant $\gamma \approx 0.5772$ has many appearances including:

- γ is the asymptotic difference between the harmonic series and the logarithm:

$$
\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln (n)\right)
$$

■ γ is the constant coefficient of the Laurent expansion of $\zeta(s)$ about $s=1$:

$$
\zeta(s)=\frac{1}{s-1}+\gamma+\ldots
$$

- γ is related to the derivative of the gamma function Γ at $s=1$:

$$
\gamma=-\Gamma^{\prime}(1)
$$

p-adic Euler constant

The p-adic Euler constant was first defined by J. Diamond and the relation to ζ_{p} is due to N . Koblitz.

Definition

The p-adic Euler constant γ_{p} is the constant coefficient of the 1 -branch $\zeta_{p, 1}$ of the p-adic zeta function about $s=1$:

$$
\zeta_{p, 1}(s)=\frac{1-\frac{1}{p}}{s-1}+\gamma_{p}+\ldots
$$

Computation using the Kubota-Leopoldt L-function

Recall that $\zeta_{p, 1}(s)=\zeta_{p}\left(s, \omega^{0}\right)=\frac{1}{s-1} \int_{\mathbb{Z}_{p}^{*}}\langle x\rangle^{1-s} d x$. We want to compute the constant term; the residual is $1-\frac{1}{p}$.

$$
\begin{aligned}
\gamma_{p} & =\lim _{s \rightarrow 1} \frac{1}{s-1}\left(\int_{\mathbb{Z}_{p}^{*}}\langle x\rangle^{1-s} d x-\left(1-\frac{1}{p}\right)\right) \\
& =\lim _{n \rightarrow \infty}-\frac{1}{p^{n}}\left(\frac{1}{p^{n}} \sum_{x=0, p \nmid x}^{p^{n}}\langle x\rangle^{p^{n}}-\left(1-\frac{1}{p}\right)\right)
\end{aligned}
$$

Since $\langle x\rangle\rangle^{p^{n}}=\omega^{-1} x^{p^{n}}$, the sum can be computed using generalized Bernoulli numbers. This gives

$$
\gamma_{p}=\lim _{n \rightarrow \infty}-\frac{1}{p^{n}}\left(B_{p^{n}, \omega^{-1}}-\left(1-\frac{1}{p}\right)\right) .
$$

L^{U} Using the p-adic logarithm and Γ_{p}

γ_{p} and the p-adic logarithm

We use the expansion of $\langle x\rangle^{1-s}$:

$$
\langle x\rangle^{1-s}=\exp _{p}\left((1-s) \log _{p}\langle x\rangle\right)=\sum_{n=0}^{\infty}\left(\log _{p}\langle x\rangle\right)^{n} \frac{(1-s)^{n}}{n!}
$$

The power series can be integrated termwise and

$$
\begin{aligned}
\zeta_{p, 1}(s) & =\frac{1}{s-1} \int_{\mathbb{Z}_{p}^{*}}\langle x\rangle^{1-s} d x \\
& =\frac{1}{s-1} \sum_{n=0}^{\infty}\left(\int_{\mathbb{Z}_{p}^{*}}\left(\log _{p}\langle x\rangle\right)^{n} d x\right) \frac{(1-s)^{n}}{n!}
\end{aligned}
$$

This yields Diamond's original definition of γ_{p} :

$$
\gamma_{p}=\int_{\mathbb{Z}_{p}^{*}}-\log _{p}\langle x\rangle d x=\lim _{n \rightarrow \infty}-\frac{1}{p^{n}} \sum_{x=0, p \nmid x}^{p^{n}} \log _{p}\langle x\rangle
$$

γ_{p} and the p-adic gamma function

We can rewrite the sum of the logarithms as

$$
\sum_{x=0, p \nmid x}^{p^{n}} \log _{p}(x)=\log _{p}\left(\prod_{x=0, p \nmid x}^{p^{n}} x\right)=\log _{p}\left(\Gamma_{p}\left(p^{n}\right)\right) .
$$

This gives:

$$
\gamma_{p}=\lim _{n \rightarrow \infty}-\frac{1}{p^{n}} \log _{p}\left(\Gamma_{p}\left(p^{n}\right)\right)=-\left(\log _{p} \Gamma_{p}\right)^{\prime}(0)=\Gamma_{p}^{\prime}(1) .
$$

Γ_{p} interpolates the factorial with the factors dividing p removed:

$$
\gamma_{p}=\lim _{n \rightarrow \infty} \frac{1}{p^{n}}\left(\Gamma_{p}\left(p^{n}+1\right)-\Gamma_{p}(1)\right)=\lim _{n \rightarrow \infty} \frac{1}{p^{n}}\left(\frac{p^{n}!}{p^{n-1}!p^{p^{n-1}}}+1\right)
$$

Computation using p-adic measures

We have the formula

$$
\zeta_{p, 1}(s)=-\frac{1}{1-\langle 2\rangle^{1-s}} \int_{\mathbb{Z}_{p}^{*}} \omega(x)^{-1}\langle x\rangle^{-s} d \mu
$$

Now we use the definition of μ and obtain:

$$
\zeta_{p, 1}(s)=-\frac{1}{1-\langle 2\rangle^{1-s}} \lim _{n \rightarrow \infty} \sum_{x=0, p \nmid x}^{p^{n}} \omega(x)^{-1}\langle x\rangle^{-s} \frac{(-1)^{x}}{2}
$$

Dirichlet series expansion

We have a Dirichlet series expansion of the p-adic zeta function:

$$
\zeta_{p, i}(s)=\frac{-1}{1-\omega(2)^{1-i}\langle 2\rangle^{1-s}} \lim _{n \rightarrow \infty} \sum_{\substack{m=0 \\ p \nmid m}}^{p^{n}} \omega(m)^{-i}\langle m\rangle^{-s} \frac{(-1)^{m}}{2}
$$

$$
\begin{aligned}
& \text { Set } s=1-p^{n} \text {. Then } \\
& \gamma_{p}=\lim _{n \rightarrow \infty} \frac{-1}{1-\langle 2\rangle^{p^{n}}}\left(\sum_{\substack{m=0 \\
p \nmid m}}^{p^{n}} \omega(m)^{-1}\langle m\rangle^{p^{n}-1} \frac{(-1)^{m}}{2}\right)+\frac{1}{p^{n}}\left(1-\frac{1}{p}\right) .
\end{aligned}
$$

For $k \equiv i \bmod p-1$ and $s=k \in \mathbb{Z}$, we get D. Delbourgo's result:

$$
\begin{aligned}
\zeta_{p, i}(k) & =\frac{-1}{1-2^{1-k}} \cdot \lim _{n \rightarrow \infty} \sum_{\substack{m=1 \\
p \nmid m}}^{p^{n}} \frac{(-1)^{m}}{2} m^{-k} \\
& =\left(1-p^{-k}\right) \zeta(k) \text { for } k<0 .
\end{aligned}
$$

-Numerical values

Computations of γ_{p}

Using any of the above formulas for γ_{p} and SageMath software, we obtain (like D. Delbourgo):

$$
\begin{aligned}
\gamma_{3} & =2 \cdot 3+2 \cdot 3^{2}+3^{3}+2 \cdot 3^{4}+3^{5}+2 \cdot 3^{6}+2 \cdot 3^{7}+2 \cdot 3^{8}+O\left(3^{10}\right) \\
\gamma_{5} & =5+3 \cdot 5^{3}+2 \cdot 5^{5}+3 \cdot 5^{6}+4 \cdot 5^{7}+5^{8}+2 \cdot 5^{9}+O\left(5^{10}\right) \\
\gamma_{7} & =5+2 \cdot 7+4 \cdot 7^{2}+6 \cdot 7^{3}+2 \cdot 7^{4}+6 \cdot 7^{6}+2 \cdot 7^{7}+7^{9}+O\left(7^{10}\right) \\
\gamma_{11} & =1+10 \cdot 11+2 \cdot 11^{2}+11^{3}+5 \cdot 11^{4}+5 \cdot 11^{5}+4 \cdot 11^{6}+O\left(11^{7}\right) \\
\gamma_{13} & =4 \cdot 13+7 \cdot 13^{3}+8 \cdot 13^{4}+7 \cdot 13^{5}+6 \cdot 13^{6}+4 \cdot 13^{7}+O\left(13^{8}\right)
\end{aligned}
$$

