
Prof. Dr. Carsten Vogt
Exercises „Operating Systems and Distributed Systems 2“
2019/20

Process Management and CPU Scheduling – Solutions

Exercise 1:  Process States

• Consider the following program:
main() {  printf("I have started.\n");
          sleep(2);
          printf("I will terminate now.\n"); }

• A process executing this programm will run through a sequence of states. Illustrate, with the
state transition diagram, this state sequence.

Solution:

• Please find a video explanation at http://www.nt.th-koeln.de/vogt/bs/blaetter.html.

running

ready blocked

1.) "I have started"

2.) sleep(2)

3.) "I will terminate now"



Exercise 2:  Comparison of Scheduling Strategies

• Consider these scheduling strategies: FCFS (First Come First Served), FP_np (Fixed priori-
ties, non-preemptive), FP_p (Fixed priorities, preemptive), RR_50 (Round Robin, time slice
= 50 ms), MQ_50 (Multilevel Queueing, round robin time slice = 50 ms)

• Given are four processes with arrival times (= instant of the arrival of the process, in ms after
time 0), execution durations (= CPU time required, in ms) and priorities:

• Scheduling the processes on the CPU leads to the following timelines. These timelines show
when the CPU serves which process (’S’ = CPU switch between processes):

• Which timeline belongs to which strategy?

Solution:

• Please find a video explanation at http://www.nt.th-koeln.de/vogt/bs/blaetter.html.

process no. arrival time execution duration priority

P1 0 200 3 (low)

P2 10 200 2 (medium)

P3 20 150 1 (high)

P4 30 50 2 (medium)

S P1 P2 P3S SS P4
201 202 402 403 553 554 6040 1

S P1 P3 P2S SS P4
202201 353352 553 554 6040 1

S 1 P3 P2 P1P4S S SS
1 2120 172171 364363 415414 6060

2S
1110

S P1 P2 P3 P4 P1 P2 P3 P1P3P2P1S S S S S SSSSSS P2
1 52 10351 102 154153 205204 256255 307306 358357 409408 460459 511510 561 562 6120

S P1 P3 P2 P4 P2S S S SS P1
1 5251 203202 254253 305304 456455 6060

FCFS: S P1 P2 P3S S
201 202 402 4030 1

FP_np: S P1 P3 P2S S
202201 353352 50 1

FP_p: S 1 P3 P2 P1P4S S SS
1 2120 172171 364363 4154140

2S
1110

RR 50: S P1 P2 P3 P4 P1 P2 P3 P3P2P1S S S S S SSSSS
1 52 10351 102 154153 205204 256255 307306 358357 409408 460459 5115100

MQ 50: S P1 P3 P2 P4 P2S S S SS
1 5251 203202 254253 305304 4564550



• Draw a similar timeline for RR_100 (i.e. Round Robin with a timeslice of 100 ms). What
improves (= becomes better) with a longer timeslice? What is the drawback of the longer
timeslice?

Solution:

• Longer timeslice better: Less management overhead = fewer switch operations

• Longer timeslice worse: Processes with short execution times terminate later

Exercise 3:  Traditional UNIX CPU Scheduling

• Given are the following constants:

• Bu = 60, norm = 0.1, decay = 2, nice = 0, priority at process start time = 60

• CPU time used by the process:
480 ms during the 1st second, 600 ms during the 2nd second, 0 ms afterwards.

• Calculate the values of "cpu_usage" and "prio" after each second:

Solution:

calculation:
variable cpu_usage at time 1
= variable cpu_usage at time 0 / 2 + CPU time used during the 1st second
= 0 / 2 + 480 = 480
variable cpu_usage at time 2
= variable cpu_usage at time 1 / 2 + CPU time used during the 2nd second
= 480 / 2 + 600 = 840
etc.

• Please find a video explanation at http://www.nt.th-koeln.de/vogt/bs/blaetter.html.

second ... 0
(= start)

1 2 3 4 5

cpu_usage

prio

second ... 0 (= start) 1 2 3 4 5

cpu_usage 0 480 840 420 210 105

prio 60 108 144 102 81 70

U 1 2 3 4 21U U UUUU 3

1 102
101

203
202

304
303

355
354

456
455 556

557 607
0



Exercise 4:  CFS Scheduling

• Consider a system that activates its scheduler every 100 ms. At these points in time, the sche-
duler assigns the CPU to one of the active processes (i.e. the processes that are ready to run)
according to the CFS (= Completely Fair Scheduling) strategy.

• Given are three processes:

• P1: Starts at instant 0 and then requests 400 ms CPU time.

• P2: Starts at instant 300 ms (= 300 ms after P1) and then requests 200 ms CPU time.

• P3: Starts at instant 400 ms and then requests 100 ms CPU time.

• At instant 800 ms, all processes request another 100 ms CPU time each.

• Draw a timeline that shows when the CPU will execute which process.

• Assume that a context switch requires no time.

• While drawing the timeline, fill in the following table. This table shall show the "runtimes"
of the processes, i.e. the total CPU times they have received up to the given instants:

Solution:

• timeline:

• table:

• Please find a video explanation at http://www.nt.th-koeln.de/vogt/bs/blaetter.html.

ms 100 200 300 400 500 600 700 800 900 1000 1100

P1

P2

P3

ms 100 200 300 400 500 600 700 800 900 1000 1100

P1 100 200 300 300 300 300 400 400 400 400 500

P2 0 0 0 100 100 200 200 200 200 300 300

P3 0 0 0 0 100 100 100 100 200 200 200

11000

P1 P2 P3 P2 P1 idle P3 P2 P1

300 400 500 600 700 800 900 1000


