Local File Systems – Solution

Exercise 1: FAT-Based Approach

- Given: A (very small) hard disk with blocks 0 11.
 - File A.TXT is stored in disk blocks 3, 1, 7 (in this order).
 - File B.DOC is stored in disk blocks 2, 11, 0, 10 (in this order).
 - Disk block 5 is damaged.
 - The remaining blocks are free.
 - Block length: 1 KByte (= 1024 Byte).
- Do the following:
 - Draw a directory that contains A.TXT and B.DOC.
 - Show for each file only the file name, the number of the first physical disk block, and a possible length in bytes.

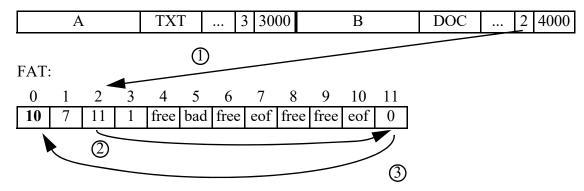
Solution: (the block length is one of multiple possible values)

A	TXT	 3	3000	В	DOC	 2	4000

• Draw the corresponding FAT.

Solution:

0	1	2	3	4	5	6	7	8	9	10	11
10	7	11	1	free	bad	free	eof	free	free	eof	0


- Assume that byte no. 3525 of file B.DOC shall be accessed:
 - How does the search for this byte proceed?
 - Which disk block and offset (= byte number within the block) result from the search?

Solution:

Access logical byte 3525

 \rightarrow in logical block 3 (because 3 = 3525 / 1024, assuming block size 1K)

Directory entry:

 \rightarrow physical block 10, offset 453 (453 = 3525 mod 1024)

- What happens
 - when A.TXT is shortened by one block?

Solution: (the block length is one of multiple possible values)

		4		TX	Γ		3 20	00		В		DOC	 2	4000
0	1	2	3	4	5	6	7	8	9	10	11			
10	eof	11	1	free	bad	free	free	free	free	eof	0			

• when B.DOC is extended by one block?

Solution: (the block length is one of multiple possible values)

	A	1		TX	Γ	3	3 30	00		В		DOC	•••	2	5000
0	1	2	3	4	5	6	7	8	9	10	11				
10	7	11	1	eof	bad	free	eof	free	free	4	0				

• when B.DOC is deleted?

Solution:

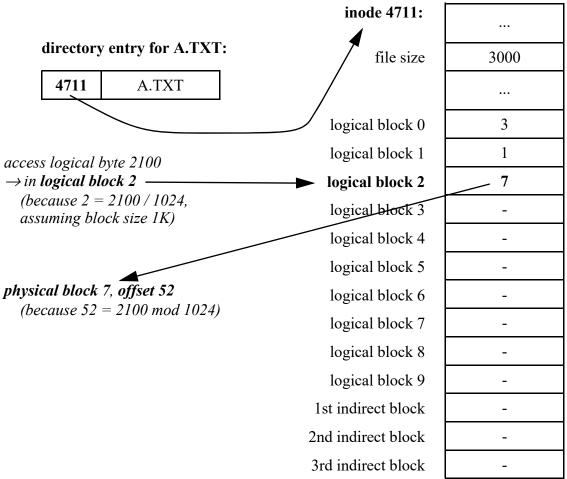
	A	1		TX	Γ		3	300	00			
0	1	2	3	4	5	6		7	8	9	10	11
free	7	free	1	free	bad	free	: 6	eof	free	free	free	free

Exercise 2: Inode-Based Approach

- Given: Two files A.TXT and B.DOC
 - File A.TXT is stored in disk blocks 3, 1, 7 (in this order).
 - File B.DOC is stored in disk blocks 2, 4, 5, 0 (in this order).
 - Block length: 1 KByte (= 1024 Byte).
- Do the following (using the traditional UNIX implementation):
 - Draw a directory containing A.TXT and B.DOC.

Solution: (the inode numbers are just examples)

4711 A.TXT 4805 B.DOC

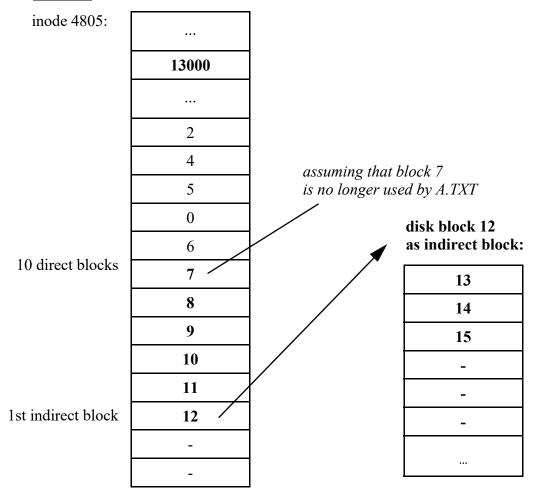

- Draw the corresponding inodes.
 - Draw only those portions that specify a possible length in bytes and all the numbers of the physical disk blocks
 - Let *m* (the number of direct block addresses in the inode) be 10

Solution: (the file lengths and block numbers are just examples for possible values)

<u>inode 4711:</u>		<u>inode 4805:</u>	
file size	3000		4000
	3		2
	1		4
	7		5
	-		0
10 direct blocks	-		-
To direct blocks	-		-
	-		-
	-		-
	-		-
	-		-
1st indirect block	-		-
2nd indirect block	-		-
3rd indirect block	-		-

- Assume that byte no. 2100 of file A.TXT shall be accessed:
 - How does the search for this byte proceed?
 - Which disk block and offset (= byte number within the block) result from the search?

Solution:


- What happens
 - when A.TXT is shortened by one block?
 - when B.DOC is extended by
 - one block?

Solution: (the file lengths and the new block no. are just examples for possible values)

<u>inode 4711:</u>		<u>inode 4805:</u>	
file size	2000		5000
	3		2
	1		4
	-		5
	-		0
10 direct blocks	-		6
TO direct blocks	-		-
	-		-
	-		-
	-		-
	-		-
1st indirect block	-		-
2nd indirect block	-		-
3rd indirect block	-		-

• and eight more blocks?

Solution:

• (and how would this be done with the modern implementation based on "extents"?)

Solution: (just the extent for the last blocks as an example)

logical block no. (start of the extent)

length (= number of adjacent physical blocks)

physical block no. (start of the extent)

(i.e.: the 9 logical blocks starting from logical block no. 4 are stored in the 9 adjacent physical blocks starting from physical block 6; no indirect block needed)

• when B.DOC is deleted?

4

Solution: The directory entry is deleted. The inode is marked to be free for reuse.

6