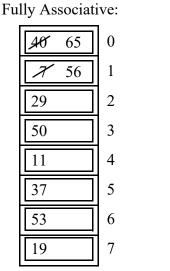
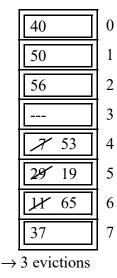
Prof. Dr. Carsten Vogt Exercises "Operating Systems and Distributed Systems 2" 2019/20


Technology Arts Sciences TH Köln

<u>Memory Management – Solutions</u>

Exercise 1: Cache Management


- Given:
 - Three caches, each initially empty:
 - A fully associative cache with a total size of 8 blocks
 - A direct mapped cache with a total size of 8 blocks where a main memory block *n* is stored at cache position *n mod 8*
 - A set associative cache with a total size of 8 blocks in 2 sets where a main memory block *n* is stored at some position in set *n mod 2*
 - A sequence of memory blocks to be brought into the cache with block numbers 40, 7, 29, 50, 11, 37, 53, 19, 65, 56
- For each of the three caches:
 - Bring the blocks (one after the other) into the cache, possibly evicting other blocks. State at which cache positions these blocks are stored.
 - How many evictions will occur at least?

Solution:

 \rightarrow 2 evictions

Set Associative:

Exercise 2: Main Memory Management

- Given:
 - A main memory with a size of 2 GB, initially empty
 - A sequence of requests for memory space and releases of memory space:
 - 1.) Request R1: 600 MB
 - 2.) Request R2: 200 MB
 - 3.) Request R3: 100 MB
 - 4.) Request R4: 600 MB
 - 5.) Release of the memory space allocated for R1
 - 6.) Release of the memory space allocated for R3
 - 7.) Request R5: 100 MB
 - 8.) Request R6: 600 MB
- For First Fit and for Best Fit memory allocation: Sketch the state of main memory (i.e. its allocated and free segments) after steps 4, 6, 7, 8 and the free memory list after steps 4 and 6.
 - If a request can be satisfied only by relocating an allocated data segment, find and carry out the relocation that moves as few data as possible.

Solution:

After step 4 - Best Fit & First Fit:

R1		R2 R3	R4	free
600N	1B 2	00MB 100MF	600MB	500MB

Free Memory List after step 4 (addresses and lengths in MB):

1500start address500length

After step 6 - Best Fit & First Fit:

free	R2	R4	free
600MB	200MB 100N	600MB	500MB

Free Memory List after step 6:

0	800	1500	
600	100	500	

After step 7 - Best Fit:

free	R2 R5	R4	free
600MB	200MB 100MB	600MB	500MB

After step 8 - Best Fit:

R6	R2 R5	R4	free
600MB	200MB 100MB	600MB	500MB

R5	free	R2	R4	free	
100MB 500MB 200MB 600MB 500MB					

After step 8 - First Fit:

R6	R2 R5	R4	free
600MB	200MB 100MB	600MB	500MB
		Relocate R5 Store R6	

Exercise 3: Disk Scheduling

- Part A:
 - Given: Three hard disks with identical sequences of access requests (all requests present at the beginning). To handle the requests, the disks access their tracks in the following orders:
 - Disk 1: 50, 48, 47, 53, 55, 40, 30, 80, 90
 - Disk 2: 50, 48, 47, 40, 30, 53, 55, 80, 90
 - Disk 3: 50, 90, 30, 48, 80, 47, 55, 53, 40
 - What scheduling strategies are used for the three disks? Write down the names of three different strategies.

Solution:

- Disk $3 \rightarrow$ FCFS (can neither be SSTF nor SCAN)
- Disk $1 \rightarrow SSTF$ (cannot be SCAN)
- Disk $2 \rightarrow SCAN$

• Part B:

- Given: A sequence of requests to access a hard disk
 - Tracks 70, 30, 10, 90, 100, 20, 60 shall be accessed.
 - The requests have arrived in this order.
 - The initial position of the read/write head is on track 50.
- State the order by which the tracks are accessed according to the
 - First-Come First-Served (FCFS) strategy.
 - Shortest Seek Time First (SSTF) strategy.
 - SCAN / elevator strategy (where the head first moves in the direction of lower track numbers).

Solution:

- FCFS: 50, 70, 30, 10, 90, 100, 20, 60
- SSTF: 50, 60, 70, 90, 100, 30, 20, 10
- SCAN: 50, 30, 20, 10, 60, 70, 90, 100