Prof. Dr. Carsten Vogt Exercises "Operating Systems and Distributed Systems 2" 2019/20

Technology Arts Sciences TH Köln

Management of the Storage Hierarchy

Exercise 1: Replacement Strategies

- Given:
 - A "reference string" of a process: 1 2 3 4 1 2 5 1 2 3 4 5
 - = sequence of virtual page numbers in the order by which they are accessed by the process
 - Replacement strategies:
 - i.) FIFO ii.) LRU
 - Main memory sizes:
 - a.) 3 page frames b.) 4 page frames

Main memory is empty when the process starts.

- Determine, for all four combinations of replacement strategy and main memory size separately (i.e. FIFO with 3 and with 4 page frames, LRU with 3 and with 4 page frames):
 - The contents of main memory immediately before each page access
 - The instants of the page faults (i.e. accesses to pages that are currently not present in main memory)
 - The total number of page faults
- Proceed as shown in:
 - http://www.nt.th-koeln.de/vogt/bs/animationen/FIFOvsLRU_engl.pdf
 - http://www.nt.th-koeln.de/vogt/bs/videos/BVS2_7334.mp4 (from minute 6:55)
- What do you observe regarding the page fault numbers for the different memory sizes?

p.t.o.

Exercise 2: Allocation of Fixed Amounts of Main Memory Space

- Assumptions:
 - Static allocation of main memory (i.e. a process gets a fixed number of page frames in main memory when it starts)
 - Main memory is initially empty
 - LRU page replacement
- Given: A reference string of a process
 - 1 2 1 2 1 2 1 2 1 2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
 - I.e. there are two phases:
 - 1st phase: Only pages 1 and 2 are accessed
 - 2nd phase: All pages 1-4 are accessed
- Determine:
 - a.) For a static allocation of 4 main memory page frames
 - b.) For a static allocation of 2 main memory page frames
 - The pages stored in main memory during phase 1 and during phase 2
 - The utilization of main memory (in percent) during phase 1 and during phase 2
 - The instants of the page faults
- What drawbacks do you see for a.) and for b.)?

Exercise 3: Working Set Strategy

- Given:
 - A reference string of a process:

• Window sizes:

a.) $\delta = 2$ b.) $\delta = 4$

- Determine for both window sizes and each of the instants t_1, t_2, t_3 :
 - The Working Set $WS(t_i, \delta)$
 - The amount of main memory space allocated to the process
- What drawback do you see for the smaller window size $\delta = 2$?